CHAPTER 4

MEASURES OF POSITION

Skewness

$\square \quad$ Skewness measures the lack of symmetry in a data distribution
$\square \quad$ The value of skewness falls between -3.0 and +3.0

The skewness value of -3.0 indicates that the distribution is extremely skewed to the left

The skewness value of +3.0 indicates that the distribution is extremely skewed to the right

- The skewness value of 0 indicates the distribution is symmetrical
- However, in research, data are considered to be normally distributed if the skewness value falls between -1.0 to +1.0
a) Mean $>$ Median $>$ Mode : The distribution is positively skewed or is skewed to the right

Figure 4.7 Distribution is positively

EXAMPLE - Exam scores

Mean $=70$ marks
Median $=50$ marks
Mode $=20$ marks

The distribution is positively skewed or is skewed to the right

b) Mean $=$ Median $=$ Mode $:$ The distribution is symmetrical

Figure 4.8 Distribution is symmetrical
c) Mean < Median < Mode : The distribution is negatively skewed or is skewed to the left

Figure 4.9 Distribution is negatively skewed

EXAMPLE - Exam scores

Mean $=20$ marks
Median $=50$ marks
Mode $=60$ marks

The distribution is negatively skewed or is skewed to the left

MEASURES OF POSITION (Ungrouped data)

Box and Whisker Plot

\square A box and whisker plot provides useful graphical representation of data using the minimum value, first quartile, second quartile, third quartile and maximum value.

Interquartile range (IQR)

Example 1

Below represent quiz scores out of 20 points for Quiz 1

$$
\begin{aligned}
& \text { Min }=2 \\
& \mathrm{Q} 1=4 \\
& \mathrm{Q} 2=12 \\
& \mathrm{Z} 3=15 \\
& \mathrm{Yax}=20
\end{aligned}
$$

Interpretation

The distribution is slightly skewed to the right

First quartiles, Q1

\square The first quartiles is a proportional value where 25% of the observations are smaller and 75% are larger than the value

Example 4.7 The three year annual returns of 14 low risk funds arranged in ascending order are given as follows.

9.77	11.35	12.46	13.80	15.47	17.48	18.37
18.47	18.61	20.72	21.49	22.47	31.50	38.16

Steps

1) Sort data in ascending order

9.77	11.35	12.46	13.80	15.47	17.48	18.37
18.47	18.61	20.72	21.49	22.47	31.50	38.16

2) Position of first quartile $=\frac{n+1}{4}$

$$
\begin{aligned}
& =\frac{14+1}{4} \\
& =3.75 \sim 4^{\text {th }}
\end{aligned}
$$

3) First quartile, $\mathrm{Q} 1=13.80$

Third quartiles, Q3

\square The first quartiles is a proportional value where 75% of the observations are smaller and 25% are larger than the value

Example 4.7 The three year annual returns of 14 low risk funds arranged in ascending order are given as follows.

9.77	11.35	12.46	13.80	15.47	17.48	18.37
18.47	18.61	20.72	21.49	22.47	31.50	38.16

Steps

1) Sort data in ascending order

9.77	11.35	12.46	13.80	15.47	17.48	18.37
18.47	18.61	20.72	21.49	22.47	31.50	38.16

2) Position of third quartile $=\frac{3(n+1)}{4}$

$$
\begin{aligned}
& =\frac{3(14+1)}{4} \\
& =11.25 \sim 11^{\text {th }}
\end{aligned}
$$

3) Third quartile, Q3 $=21.49$

MEASURES OF POSITION (Grouped data)

Info

		Formula	Graph
Measures of position	First quartile	$Q_{1}=L_{1}+\left[\frac{\frac{n}{4}-F_{1}}{f_{1}}\right] \times C_{1}$	Ogive
	Third quartile	$Q_{3}=L_{3}+\left[\frac{\frac{3 n}{4}-F_{3}}{f_{3}}\right] \times C_{3}$	Ogive

First quartile, Q1

\square For grouped data, first quartile is calculated as follows.

$$
Q_{1}=L_{1}+\left[\frac{\frac{n}{4}-F_{1}}{f_{1}}\right] \times C_{1}
$$

where

$$
\begin{aligned}
\mathrm{n} & =\text { sample size } \\
\mathrm{L}_{1} & =\text { lower boundary of the Q1 class } \\
\mathrm{F}_{1} & =\text { cumulative frequency before the Q1 class } \\
\mathrm{f}_{1} & =\text { frequency of the Q1 class } \\
\mathrm{C}_{1} & =\mathrm{Q} 1 \text { class size }
\end{aligned}
$$

First quartile, Q1

Using FORMULA

Example 4.12

\square The table shows the distribution of test scores obtained by 42 students in a Statistics class

Scores obtained	Number of students
$80-90$	1
$90-100$	2
$100-110$	5
$110-120$	10
$120-130$	15
$130-140$	7
$140-150$	2
Total	42

\square Calculate the first quartile, Q1 and explain its meaning.

Step 1: Obtain the cumulative frequencies

Scores obtained	Number of employees (f)	Cumulative frequency	
$80-90$	1	- 1	
90-100	2	$\rightarrow \quad 3$	
100-110	5	$\rightarrow \quad 8$	
110-120	10	$\rightarrow \quad 18$	
120-130	15	- 33	
130-140	7	$\rightarrow \quad 40$	
140-150	2	$\rightarrow \quad 42$	
Total	42		

Step 2: Obtain the position of data

Scores obtained	Number of employees (f)	Cumulative frequency	Position of data
$80-90$	1	1	1
$90-100$	2	3	$2-3$
$100-110$	5	8	$4-8$
$110-120$	10	18	$9-18$
$120-130$	15	33	$19-33$
$130-140$	7	40	$34-40$
$140-150$	2	42	$41-42$
Total	42		

\square Step 3: Obtain the first quartile location

$$
\frac{n}{4}=\frac{42}{4}=10.5^{\text {th }} \quad \text { or } \quad \frac{\sum f}{4}=\frac{42}{4}=10.5^{\text {th }}
$$

\square Step 4: Obtain the first quartile class
$10.5^{\text {th }}$ is between 9 and 18

Scores obtained	Number of employees (f)	Cumulative frequency	Position of data
$80-90$	1	1	1
$90-100$	2	3	$2-3$
$100-110$	5	8	$4-8$
$110-120$	10	18	$9-18$
$120-130$	15	33	$19-33$
$130-140$	7	40	$34-40$
$140-150$	2	42	$41-42$
Total	42		

\square Step 5: Apply the formula
$Q_{1}=L_{1}+\left[\frac{\frac{n}{4}-F_{1}}{f_{1}}\right] \times C_{1}$
$Q_{1}=110+\left[\frac{\frac{42}{4}-8}{10}\right] \times 10$
$Q_{1}=112.50$
Interpretation
25% of students scored less than 112.5 marks and other 75% scored more than 112.5 marks

First quartile, Q1

\square Using OGIVE

Estimating the Q1 from an OGIVE

Third quartile, Q3

\square For grouped data, third quartile is calculated as follows.

$$
Q_{3}=L_{3}+\left[\frac{\frac{3 n}{4}-F_{3}}{f_{3}}\right] \times C_{3}
$$

where
n = sample size
$L_{3}=$ lower boundaries of the Q3 class
$F_{3}=$ cumulative frequency before the Q3 class
$f_{3}=$ frequency of the Q3 class
$C_{3}=$ Q3 class size

Third quartile, Q3

Using FORMULA

Example 4.12

\square The table shows the distribution of test scores obtained by 42 students in a Statistics class

Scores obtained	Number of students
$80-90$	1
$90-100$	2
$100-110$	5
$110-120$	10
$120-130$	15
$130-140$	7
$140-150$	2
Total	42

\square Calculate the third quartile,Q3 and explain its meaning.

Step 1: Obtain the cumulative frequencies

Scores obtained	Number of employees (f)	Cumulative frequency	
$80-90$	1	- 1	
90-100	2	$\rightarrow \quad 3$	
100-110	5	$\rightarrow \quad 8$	
110-120	10	$\rightarrow \quad 18$	
120-130	15	- 33	
130-140	7	$\rightarrow \quad 40$	
140-150	2	$\rightarrow \quad 42$	
Total	42		

Step 2: Obtain the position of data

Scores obtained	Number of employees (f)	Cumulative frequency	Position of data
$80-90$	1	1	1
$90-100$	2	3	$2-3$
$100-110$	5	8	$4-8$
$110-120$	10	18	$9-18$
$120-130$	15	33	$19-33$
$130-140$	7	40	$34-40$
$140-150$	2	42	$41-42$
Total	42		

\square Step 3: Obtain the third quartile location
$\frac{3(n)}{4}=\frac{3(42)}{4}=31.5^{\text {th }} \quad$ or $\quad \frac{3 \sum f}{4}=\frac{3(42)}{4}=31.5^{\text {th }}$
\square Step 4: Obtain the third quartile class
31.5 ${ }^{\text {th }}$ is between

19 and 33

Scores obtained	Number of employees (f)	Cumulative frequency	Position of data
$80-90$	1	1	1
$90-100$	2	3	$2-3$
$100-110$	5	8	$4-8$
$110-120$	10	18	$9-18$
$120-130$	15	33	$19-33$
$130-140$	7	40	$34-40$
$140-150$	2	42	$41-42$
Total	42		

Q3

class
\square Step 5: Apply the formula

$$
\begin{aligned}
& Q_{3}=L_{3}+\left[\frac{\frac{3(n)-F_{3}}{4}}{f_{3}}\right] \times C_{3} \\
& Q_{3}=120+\left[\frac{\frac{3(42)}{4}-18}{15}\right] \times 10 \\
& Q_{3}=129
\end{aligned}
$$

Interpretation
75% of students scored less than 129 marks and other 25% scored more than 129 marks

Third quartile, Q3

Using OGIVE

Estimating the Q3 from an OGIVE

END

