

UNIVERSITI TEKNOLOGI MARA FINAL EXAMINATION

COURSE	:	STATISTICS FOR BUSINESS AND SOCIAL SCIENCES
COURSE CODE	:	STA404
EXAMINATION	:	JUNE 2018
TIME	:	2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of seven (7) questions.
- 2. Answer ALL questions in the Answer Booklet. Start each answer on a new page.
- 3. Do not bring any material into the examination room unless permission is given by the invigilator.
- 4. Please check to make sure that this examination pack consists of :
 - i) the Question Paper
 - ii) a five page Appendix 1
 - iii) an Answer Booklet provided by the Faculty
 - iv) a Statistical Tables provided by the Faculty
- 5. Answer ALL questions in English.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of 8 printed pages

© Hak Cipta Universiti Teknologi MARA

QUESTION 1 Chapter 1 - Introduction

SS Airlines has implemented a new boarding policy. In order to determine its customers' opinion of this new policy, a group of researchers made a list of all its flights and randomly selected 30 flights. All of the passengers on those flights were invited to answer a questionnaire during a certain week. One of the survey items was "Please rate your overall boarding experience today based on the following scale: 1- Excellent; 2- Good; 3-Fair; 4-Poor; 5- Very poor".

- a) State the population and the sample of this study. Population: all SS Airlines customers Sample: 30 flights that were randomly selected (or All passengers of the 30 flights randomly selected)
 b) Name the sampling method used in this study. Give a reason for your answer.
- Cluster Sampling. Reason: Only 30 flights were selected and all passengers in the selected flights were invited (3 marks) to perform the survey. c) Identify the type of variable and the scale of measurement for the variable "boarding
- experience rating". Variable Type: Qualitative Scale of Measurement: Ordinal

QUESTION 2 Chapter 2 - Descriptive Statistics

The following chart shows the recorded weekly milk yield (in the nearest kg) for each cow selected at random from Farm A.

12 13 14 15 16 17	9 2 1 2 2	9 4 2 3 2 3	5 3 5 2	6 7 8 3	8 7 7	8	129, 129, 132, 134, 135, 136, 138, 138,
							Key: 12 9 means 129

a) State the name of the above chart. stem and leaf display

(1 mark)

- b) Find the median weekly milk yield recorded at Farm A. Hence, interpret the result. median location = (n+1)/2 = (24+1)/2 = 12.5 Median = (X12 + X13)/2 = (147 + 147)/2 = 147 Half of the cows yielded weekly milk of less than 147 kg.
 (2 marks)
- c) The statistics for the weekly milk yields for Farm A and Farm B are summarized in the following table. Using an appropriate measure, determine which farm has more consistent weekly milk yield.

Descriptive Statistics					
	N	Mean	Std Deviation		
Farm A	24	148.7	13.7		
Farm B	28	158.5	8.3		

(5 marks)

```
CV = 13.7/148.7 x 100% = 9.21%
```

Farm A

© Hak Cipta Universiti Teknologi MARA

Farm B CV = 8.3/158.5 x 100% = 5.24% CONFIDENTIAL

Farm B has a more consistent weekly milk yield

answer.

90% -> d=0.1

1-0-1

QUESTION 3 Chapter 3 - Estimation

The table below shows the summary statistics for the traveled distance from home to work (in km) by 28 employees of ABC company.

3

		One	-Sample S	statistics		
		N	Mean	Std. Deviation	Std. Error Mean	<u></u>
	Distance	28	14.3	X	0.4914	
a)	Find the value of X.	$t = \frac{S}{\sqrt{n}}$	→ 0.491	$f = \frac{x}{\sqrt{28}} \longrightarrow x =$	2.6002 (3	marks)
b)	Construct a 90% confide work (in km) by the empl $\overline{x} \pm l_{4/2} \frac{3}{\sqrt{n}}$, $2f = n - 1$ 14.3 Based on the confidence	ence interv	al for the	true mean travele	d distance from h	ome to marks)
c)	Based on the confidence by the employees of ABC	interval ir	1 (D), IS the	mean traveled dis	stance from nome t	to work ort your

There is enough evidence to support the mean traveled distance is 15 km since the value is included in the confidence interval. (2 marks)

QUESTION 4 Chapter 4 - Independent sample t test

Two groups of drivers are surveyed to see how many kilometers per week they drive for pleasure trips. The recorded data were analyzed using SPSS software. The output of statistical analysis is shown in the following tables.

	Sloup Statistics							
	Type of drivers	N	Mean	Std.	Std. Error			
				Deviation	Mean			
Distance in	Single drivers	35	196.4779	32.62732	5.51502			
km	Married drivers	35	189.1209	25.94217	4.38503			

Group Statistics

Independent Samples Test						
4			Distanc	e in km		
			Equal	Equal		
			variances	variances		
			assumed	not		
				assumed		
Levene's Test for	F		1.102			
Equality of Variances	Sig.		.298			
	t		1.044	1.044		
	df		68	64.714		
	Sig. (2-tailed)		.300	.300		
t-test for Equality of	Mean Difference		7.35700	7.35700		
Means	Std. Error Difference		7.04585	7.04585		
	95% Confidence	Lower	-6.70277	-6.71570		
	Interval of the Difference	Upper	21.41677	21.42971		

- a) Based on p-value in the Levene's Test, test the equality of variances in this study. Use $\alpha = 0.05$. H0: Equal variances assumed; H1: Equal variances not assumed Reject H0 if p-value < 0.05. Here we have p-value = 0.3 > 0.05, therefore (3 marks) we failed to reject the H0. Hence, the equal variance assumption is assumed.
- b) State the null and alternative hypotheses to test whether single drivers do more driving $H_{s}: \mathcal{M}_{s} = \mathcal{M}_{m}$ (2 marks) $H_{0}: \mathcal{M}_{s} - \mathcal{M}_{m} = 0$ on average than married drivers for pleasure trips. Null: Driving for pleasure trips is the same for single and married drivers Null: Driving for pleasure trips for single drivers is more than married drivers $\#_{1}: \mathcal{M}_{2} \xrightarrow{\sim} \mathcal{M}_{3}$
- c) At 10% significance level, can it be concluded that the single drivers do more driving for pleasure trips on average than married drivers?

$$\begin{array}{c} \bigcirc CV = \mathcal{Z}_{d} = \mathcal{Z}_{0,1} = 1.2816 \\ \hline \mathcal{Q} = \mathcal{Z}_{stat} = \frac{7.357}{(3 \text{ marks})} \\ \hline \mathcal{Q} = \frac{7.357}{(3 \text{$$

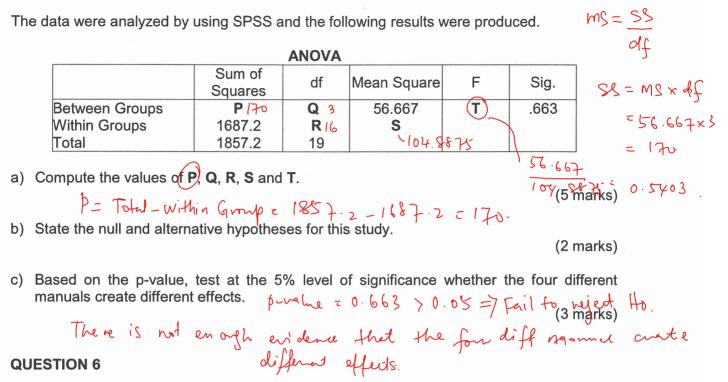
A secretarial training school is experimenting with four different manuals for a typing course. The school divided 20 students into four classes, and each class used a different manual. At the end of the training session, a test was given, and the scores shown in table below.

	Manual							
Α	В	С	D					
67	89	75	78					
79	86	95	74					
85	87	69	95					
86	73	94	85					
79	87	60	93					
79.2	84. y	78.6	85					

© Hak Cipta Universiti Teknologi MARA

CONFIDENTIAL

Gm = 81.8


$$P = 5(74.2 - 81.8)^{2} + 5(84.4 - 81.8)^{2} + 5(78.6 - 81.8)^{2} + 5(85 - 81.8)^{2}$$

= 170

H1: 15-11-70

1.044

1.250 F

CS/JUN 2018/STA404

QUESTION 6

A travel agency was curious about whether the service a guest receives is related to the size of the hotel. A sample of 300 customers was selected at random to gather the information. The data were analyzed using SPSS and the following tables were obtained.

Opinion on	services *	Size c	of Hotel	Crosstabulation

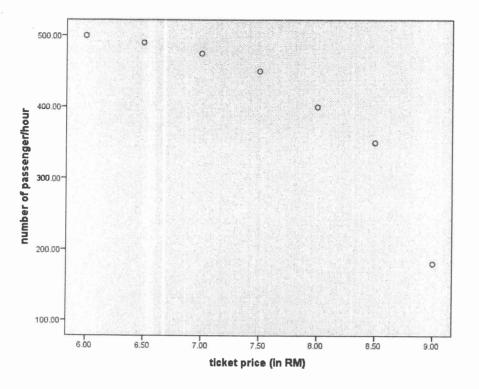
-			S	Total		
	-		Large	Mid-size	Small	
	Satisfied	Count	80	40	E=30	150
	Salislieu	Expected Count	80.0	45.0	25.0	150.0
	Count	60	30	10	100	
Opinion	Opinion So-so	Expected Count	53.3	30.0	16.7	100.0
	Dissatisfied	Count	20	20	10	50
	Dissatistied	Expected Count	F	15.0	8.3	50.0
Total		Count	160	90	50	300
	TOLAI	Expected Count	160.0	90.0	50.0	300.0

 $\frac{50 \times 160}{2} = 26.7$

Chi	-Square T	ests				
	Value	df	Asymp. Sig.			
			(2-sided)			
Pearson Chi-Square	8.722 ^a	G	.068			
Likelihood Ratio	9.081	4	.059			
Linear-by-Linear	.117	1	.732			
Association				(t-1)(c-1)		
N of Valid Cases	300			=(3-1)(3-1)		
a. 0 cells (0.0%) have ex	a. 0 cells (0.0%) have expected count less than 5. The					
				N		

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.33.

a) Compute the values of E, F and G. V


(3 marks)

- b) State the null and alternative hypotheses to test whether the customers' opinion and the size of the hotel are related. Null hypothesis: customers' opinion and the size of hotel are not related. (2 marks) Alternative hypothesis: customers' opinion and the size of hotel are related.
- c) Based on the p-value, state your decision and conclusion for the above test. Use $\alpha = 0.10$.

(3 marks) 5.227 obtain from table **QUESTION 7** 7.7

A study was conducted to investigate the effects of train ticket prices on the number of passengers per hour. The data are plotted on a scatter diagram and the SPSS outputs are given below.

Ticket Price (in RM)	6.00	6.50	7.00	7.50	8.00	8.50	9.00
Passengers/Hour	500	490	475	450	400	350	180

Model Summary								
Model	R	R Square	Adjusted R	Std. Error of				
			Square	the Estimate				
1	.897ª	.804	.765	54.91389				

a. Predictors: (Constant), ticket price (in RM)

1.0	ott:	~! ~	nts ^a	

Мо	del	Unstandardized		Standardized	t	Sig.
		Coefficients		Coefficients		
		В	Std. Error	Beta		
	(Constant)	1110.893	157.044		7.074	.001
1	ticket price	-93.929	20.756	897	-4.525	.006
	(in RM)					

a. Dependent Variable: number of passenger/hour

a) Based on the scatter diagram above, briefly describe on the relationship between the two variables.
 There is a strong negative relationship between number of passengers and ticket price (2 marks)

b) Using SPSS output, write the linear regression equation.

y = 1110.893 - 93.929x where y = number of passenger/hour x = ticket price (in RM)

© Hak Cipta Universiti Teknologi MARA

CONFIDENTIAL

(2 marks)

c)	What does the slope tell you about the ticket price and the passenger/hour? slope = -93.929. Foe each additional increase in ticket price by one unit (RM1), the total number of passengers per hour will decrease by approximately 94 passengers.	(1 mark)
d)	State the value of the coefficient of determination. Interpret its meaning. r-square = 0.804. Interpretation: 80.4% variations in number of passengers per hour can be explained by the amount of ticket price.	(3 marks)
e)	Estimate the number of passenger/hour if the train ticket price is RM7.90. x = 7.9 y = 1110.893 - 93.929(7.9) = 368.9 passengers/hour	(2 marks)

END OF QUESTION PAPER

© Hak Cipta Universiti Teknologi MARA

CONFIDENTIAL

8

Mean	$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n}$	
Standard deviation	$s = \sqrt{\frac{1}{n-1} \left[\sum x^2 - \frac{\left(\sum x\right)^2}{n} \right]} \text{ or }$ $s = \sqrt{\frac{1}{n-1} \left[\sum (x-\overline{x})^2 \right]}$	
Coefficient of Variation	$CV = \frac{s}{\overline{x}} \times 100\%$	
Pearson's Measure of Skewness	Coefficient of Skewness = $\frac{3(\text{mean} - \text{median})}{\text{s tan dard deviation}} OR \frac{\text{mean} - \text{mod e}}{\text{s tan dard deviation}}$	

SAMPLE MEASUREMENTS

© Hak Cipta Universiti Teknologi MARA

CONFIDENCE INTERVAL

Parameter and description	A (1 - α) 100% confidence interval
Mean μ , for large samples	$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ or $\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$
Mean μ , for small samples, variance σ^2 unknown	$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$; df = n - 1
Difference in means of two normal distributions	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$; df = n_1 + n_2 - 2
μ_1 - μ_2 , variances $\sigma_1^2=\sigma_2^2$ and unknown	$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}};$
Difference in means of two normal distributions $\mu_1 - \mu_2$,	df = $\frac{\left[\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}} \right]^{2}}{2}$
variances $\sigma_1^2 \neq \sigma_2^2$ and unknown	df = $\frac{\begin{bmatrix} s_1^2 \\ n_1 \end{bmatrix}^2}{\begin{bmatrix} s_1^2 \\ n_1 \end{bmatrix}^2} + \frac{\begin{bmatrix} s_2^2 \\ n_2 \end{bmatrix}^2}{\begin{bmatrix} n_1 \\ n_1 \end{bmatrix}^2} + \frac{\begin{bmatrix} s_2^2 \\ n_2 \end{bmatrix}^2}{\begin{bmatrix} n_2 \\ n_2 \end{bmatrix}^2}$
Mean difference of two normal distributions for paired samples, μ_{d}	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$; df = n – 1 where n is no. of pairs

HYPOTHESIS TESTING

Null Hypothesis	Test statistic
H_0 : $\mu = \mu_0$ σ^2 known, large samples	$z = rac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ or $z = rac{\overline{x} - \mu_0}{s / \sqrt{n}}$
$H_0: \mu = \mu_0$ σ^2 known, small samples	$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} ; df = n - 1$
$H_0: \mu_1 - \mu_2 = 0$ $\sigma_1^2 = \sigma_2^2$ and unknown	$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} ; df = n_1 + n_2 - 2$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
$H_0: \mu_1 - \mu_2 = 0$ $\sigma_1^2 \neq \sigma_2^2$ and unknown	$t = \frac{(\bar{x}_{1} - \bar{x}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$ $df = \frac{\left[\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right]^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}} + \frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}$
H ₀ : μ _d = 0	$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} ; df = n - 1, \text{ where } n \text{ is no. of pairs}$
Hypothesis for categorical data	$\chi^2 = \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$

© Hak Cipta Universiti Teknologi MARA

CONFIDENTIAL APPENDIX 1 (4) CS/JUN 2018/STA404

ANALYSIS OF VARIANCE FOR A COMPLETELY RANDOMIZED DESIGN

Let:

$$k = \text{ the number of different samples (or treatments)}$$

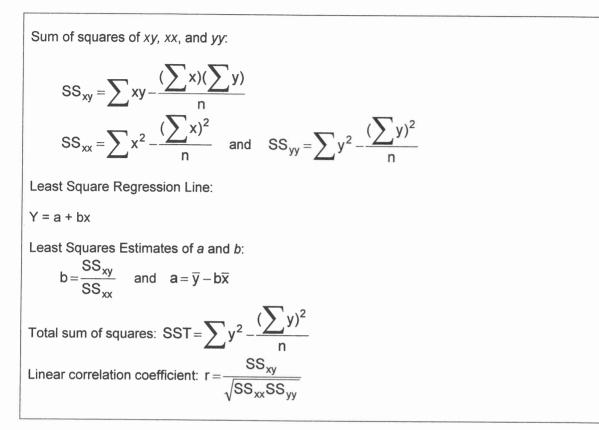
$$n_{i} = \text{ the size of sample i}$$

$$T_{i} = \text{ the sum of the values in sample i}$$

$$n = \text{ the number of values in all samples}$$

$$= n_{1} + n_{2} + n_{3} + \dots$$

$$\sum X = \text{ the sum of the values in all samples}$$


$$= T_{1} + T_{2} + T_{3} + \dots$$

$$\sum x^{2} = \text{ the sum of the squares of values in all samples}$$
Degrees of freedom for the numerator = k - 1
Degrees of freedom for the denominator = n - k
Total sum of squares: SST =
$$\sum x^{2} - \frac{(\sum x)^{2}}{n}$$
Between-samples sum of squares:

$$SSB = \left(\frac{T_{1}^{2}}{n_{1}} + \frac{T_{2}^{2}}{n_{2}} + \frac{T_{3}^{2}}{n_{3}} + \dots\right) - \frac{(\sum x)^{2}}{n}$$
Within- samples sum of squares = SST - SSB
Variance between samples: MSB =
$$\frac{SSB}{(k-1)}$$
Variance within samples: MSW =
$$\frac{SSW}{(n-k)}$$
Test statistic for a one-way ANOVA test: $F = \frac{MSB}{MSW}$

© Hak Cipta Universiti Teknologi MARA

SIMPLE LINEAR REGRESSION

© Hak Cipta Universiti Teknologi MARA